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The ability to build accurate protein families is a fundamental operation in bioinformatics

that influences comparative analyses, genome annotation, and metabolic modeling. For

several years we have been maintaining protein families for all microbial genomes in the

PATRIC database (Pathosystems Resource Integration Center, patricbrc.org) in order

to drive many of the comparative analysis tools that are available through the PATRIC

website. However, due to the burgeoning number of genomes, traditional approaches

for generating protein families are becoming prohibitive. In this report, we describe a

new approach for generating protein families, which we call PATtyFams. This method

uses the k-mer-based function assignments available through RAST (Rapid Annotation

using Subsystem Technology) to rapidly guide family formation, and then differentiates

the function-based groups into families using a Markov Cluster algorithm (MCL). This

new approach for generating protein families is rapid, scalable and has properties that

are consistent with alignment-based methods.
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INTRODUCTION

The ability to generate accurate protein families is a fundamental component for many
bioinformatic applications. It enables evolutionary and contextual comparisons of homologous
proteins within and across genomes (Smith, 1990). For instance, genome annotation tools often use
protein family data to aid in the propagation of annotations to new genomes (Meyer et al., 2009;
Haft et al., 2013; Tatusova et al., 2013a). In metabolic modeling, protein families are often used to
help fill gaps in draft models (Henry et al., 2010; Benedict et al., 2014; Seaver et al., 2014). On the
PATRIC website, data from protein families are used to drive a variety of comparative analysis tools
including the compare regions viewer where users can compare the genomic context of genes, and
the heat map display where users can view protein family membership across any set of organisms
in the database (Wattam et al., 2014a).

Maintaining up-to-date protein family data for sequenced genomes is challenging because
the number of genomes is growing rapidly and traditional methods of family generation are
computationally intensive. The most commonly used methods for protein family generation start
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FIGURE 4 | Median percent identity among family members. Histograms depict the number of protein families vs. the median percent identity for all pairwise

BLAST comparisons between family members for (A) the 43 Brucella genomes, (B) the 38 Escherichia genomes, and (C) the 80 diverse genomes. Families generated

by FIGfams are depicted as red lines with square plot points, kClust are orange lines with diamond plot points, OrthoMCL are green lines with triangle plot points, and

PATtyFams are blue lines with circle plot points.

FIGURE 5 | Conservation of protein domains within family members. Histograms depict the total number of protein domains vs. their conservation across all

members of each family as generated by FIGfams (red), kClust (orange), OrthoMCL (green), and PATtyFams (blue). Data are shown for the subset of families in which

≥ 90% of the genomes are represented for (A) the 43 Brucella genomes, (B) the 38 Escherichia genomes, and (C) the 80 diverse genomes.

circumstances, one may wish to have very tight protein clusters
and another may wish to have clusters that are very inclusive.
Nevertheless, we observe that the PATtyFams are consistent with
these other methods and tend to have characteristics that are
most similar to families generated by OrthoMCL. OrthoMCL
creates more bins that are equal to the number of the genomes
in the set, while PATtyFams can create bins that are somewhat
larger. This is likely due to OrthoMCL attempting to distinguish
“recent” paralogs, which PATtyFam algorithm does not do.
PATtyFams also share the most identical core local families with
other methods, with the largest subset being held in common
with OrthoMCL. The median percent identity, conservation
of protein domains, and conservation of chromosomal context
among family members also most closely resembles OrthoMCL.

The comparison of global families indicates that PATtyFams
are more strongly conserved in median percent identity having

dramatically fewer proteins with percent identities below 40%.
We consider this to be a favorable behavior because families
with <40% identity among members are likely to be inaccurate
(Rost, 1999). This is probably the result of the annotation
data limiting initial cluster formation. Presumably this behavior
could also be achieved by raising the similarity threshold or
inflation value for kClust and OrthoMCL, but PATtyFams have
this natural behavior in the presence of potentially binnable
low similarity sequences. Similar to percent identity, the global
families also have fewer core family members with aberrant
protein domains and dramatically fewer core family members
with aberrant chromosomal contexts. Although this indicates
a tighter clustering behavior for global family generation, we
consider this to be a favorable behavior as well. We conclude
therefore, that PATtyFams method is valuable for binning
isofunctional homologs.
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FIGURE 6 | Chromosomal context conservation within family members. For the protein-encoding gene of each family member, the functions of its neighboring

genes 5 kbp upstream, and downstream were obtained. Histograms depict the total number of functions vs. their conservation among family members. Data for

families generated by FIGfams are shown in red, kClust are orange, OrthoMCL are green, and PATtyFams are blue. Data are shown for the subset of protein families in

which ≥90% of the genomes are represented for (A) the 43 Brucella genomes, (B) the 38 Escherichia genomes, and (C) the 80 diverse genomes. Note that the

number of proteins in the 0.1 bin is not displayed for the 80 diverse genomes and is 96,117 for FIGfams, 5540 for kClust, 75,070 for OrthoMCL, and 55,525 for

PATtyFams.

This project has enabled us to make improvements in several
important comparative analysis tools on the PATRIC website.
These include the compare regions tool which allows users to
compare the chromosomal context of protein-encoding genes
across phylogenetic distances, the protein family sorter which
allows users to browse and compare protein family members and
to select protein sets for making alignment and trees, and the heat
map display of protein family membership which allows users
to visually compare genomes and locate horizontally transferred
regions. When a user uploads a new genome to the PATRIC
annotation service, local and global PATtyFams are automatically
computed enabling an integrated contextual view of each
genome through the website tools. PATRIC has also recently
released a service that enables automated metabolic model
reconstruction that is similar to that in the KBase (kbase.us)
and ModelSEED (Henry et al., 2010) resources. We anticipate
that the ability to build automated metabolic models coupled
with the added curation advantage of having comprehensive
annotation-based protein families will be beneficial to the
modeling community.
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